6) Исполнительные устройства: шаговые и линейные двигатели. Достоинства и недостатки.

Шаговые эл. двигатели – управляются дискретно подаваемыми импульсами

напряжения постоянного тока. Эти импульсы являются обычным выходом цифровых ЭВМ и других систем управления.

Шаговый двигатель идеален для осуществления точных угловых перемещений. Они хорошо зарекомендовали себя в устройствах без обратной связи, где система управл. только выдаёт команду, не проверяя её отработки. Они применяются в приводах ПР и станков с ЧПУ. В большинстве случаев эти приводы не имеют обратной связи, однако, она может быть осуществлена путём контроля положения приводимого узла.

Устройство в цепи обратной связи сравнивает действительное положение узла с заданным, определяет рассогласование. Устройство управления выдаёт импульсы на шаговый двигатель до тех пор, пока рассогласование не будет сведено к нулю.

Серводвигатели постоянного тока – применение, что и шаговые эл. двигатели. Имеется контур обратной связи. Когда рассогласование сведено к нулю, напряжение также снижается до нуля. Более развитые сервопривода могут регулировать напряжение пропорционально скорости изменения рассогласования или

результатом суммирования накопленного рассогласования по времени.

Важной особенностью серводвигателей постоянного тока и шаговых эл. двигателей является способность сохранять вращающий момент в неподвижном состоянии.

Недостатки шагового двигателя:

  • шаговым двигателем присуще явление резонанса
  • возможна потеря контроля положения ввиду работы без обратной связи
  • потребление энергии не уменьшается даже без нагрузки
  • затруднена работа на высоких скоростях
  • невысокая удельная мощность
  • относительно сложная схема управления

Преимущества шагового двигателя:

Главное преимущество шаговых приводов - точность

  • угол поворота ротора определяется числом импульсов, которые поданы на двигатель
  • двигатель обеспечивает полный момент в режиме остановки (если обмотки запитаны)
  • прецизионное позиционирование и повторяемость. Хорошие шаговые двигатели имеют точность от   3 до  5%  от величины шага. Эта ошибка не накапливается от шага к шагу
  • возможность быстрого старта/остановки/реверсирования
  • высокая надежность, связанная с отсутствием щеток, срок службы шагового двигателя фактически определяется сроком службы подшипников
  • однозначная зависимость положения от входных импульсов обеспечивает позиционирование без обратной связи
  • возможность получения очень низких скоростей вращения для нагрузки, присоединенной непосредственно к валу двигателя без промежуточного редуктора
  • может быть перекрыт довольно большой диапазон скоростей, скорость пропорциональна частоте входных импульсов

 

10 наиболее значимых недостатков серво двигателей (кроме их относительно дорогой стоимости):
1) Для стабильной работы двигателя требуется настройка драйвера (ПИД-регулятор).
2) Мотор может сгореть. Для предотвращения этого требуются специальные защитные цепи в драйвере.
3) Необходимо наличие энкодера.
4) Низкий срок эксплуатации щеток двигателя (требуется регулярное обслуживание и замена).
5) Пиковые нагрузки сокращают рабочий цикл.
6) При длительной работе с перегрузками двигатель может сгореть.
7) Сложность выбора двигателей, энкодеров и серводрайверов.
8) Многократное увеличение потребляемой энергии при пиковых нагрузках.
9) Двигатель развивает пиковую мощность на высокой скорости.
10) Плохое охлаждение двигателя. Требуется внешний вентилятор.

 

10 наиболее значимых преимуществ шагового двигателя:
1) Стабильность. Работает при различных нагрузках.
2) Не требует обратной связи. Двигатель имеет фиксированный угол поворота.
3) Относительно невысокая стоимость для организации систем контролированных перемещений
4) Стандартизированные размеры двигателя и угол поворота.
5) Простота в установке и использовании.
6) Надежность. Если что-либо поломается, двигатель остановится.
7) Долгий срок эксплуатации.
8) Превосходный крутящий момент на низких оборотах.
9) Превосходная повторяемость при позиционировании.
10) Шаговый двигатель не может сгореть при нагрузке, превышающей максимальный вращающий момент двигателя. (При такой нагрузке двигатель будет просто пропускать шаги).

Линейный электродвигатель

Собственно двигатель состоит всего из 2 (!) элементов: электромагнитного статора и плоского ротора, между которыми лишь воздушный зазор. Третий обязательный элемент – оптическая или другая измерительная линейка с высокой дискретностью (0,1 мкм). Без нее система управления станка не может определить текущие координаты. И статор, и ротор выполнены в виде плоских, легко снимаемых блоков: статор крепится к станине или колонне станка, ротор - к рабочему органу (РО). Ротор элементарно прост: он состоит из ряда прямоугольных сильных (редкоземельных) постоянных магнитов. Закреплены магниты на тонкой плите из специальной высокопрочной керамики, коэффициент температурного расширения которой в два раза меньше чем у гранита. Использование керамики совместно с эффективной системой охлаждения решило многие проблемы линейных приводов, связанные с температурными факторами, с наличием сильных магнитных полей, с жесткостью конструкции и т.п.

     Точная и равномерная подача РО во всем диапазоне скоростей и нагрузок обеспечивается двумя техническими решениями:

крепление постоянных магнитов под определенным фиксированным углом, который был открыт в ходе длительных экспериментов;

реализация высокоэффективной 6-ти фазной импульсной системы управления (система SMC).

     Компания "СОДИК" организовала на своих заводах серийный выпуск широкой гаммы ЛД с характеристиками: с ходом подач от 100 до 2220 мм, с максимальной скоростью перемещения РО до 180 м/мин с ускорениями до 20G (!!!) при точности исполнения заданных перемещений (в нормальном режиме работ) равной 0,0001мм (0,1 мкм). Нагрев этих ЛД при работе не превышает + 2° С от температуры помещения. Обеспечивается практически мгновенная остановка РО, реверс, моментальная реакция привода на команды системы ЧПУ и т.д. На один и тот же рабочий орган монтируется (например, для увеличения мощности) несколько линейных двигателей. Так, в частности, устроен привод оси Z всех ЭЭ прошивочных станков "СОДИК".

     Как указывалось, и статор, и ротор ЛД предельно просты. Статор исполнен в виде прямоугольного блока и крепится несколькими болтами к несущей конструкции станка. В приводе оси Z - два статора. Они размещены по обе стороны вертикального ползуна. К каждому статору крепятся два патрубка системы охлаждения статора и кабели подвода энергии и управления. Пластина ротора жестко крепится болтами к подвижной каретке (РО ). Так как в приводе оси Z два ЛД, то на каретке крепятся, соответственно, два ротора , каждый напротив своего статора. Система специальных направляющих и пневмопротивовес обеспечивают исключительную легкость хода каретки, практически без усилий. Приводы по осям X, Y прошивочных станков и в приводах X, Y, U, V проволочно-вырезных станков проще - в них всего по одному ЛД.

 

 

     Особенно следует отметить простоту обслуживания ЛД, простоту периодической чистки (при необходимости), профилактики и ремонта. Так, чтобы заменить ротор ЛД, достаточно открутить несколько болтов, крепящих ротор к РО. Для замены статора помимо болтов нужно лишь снять две трубки системы охлаждения статора и отсоединить кабель.

Линейный двигатель — электродвигатель, у которого один из элементов магнитной системы разомкнут и имеет развёрнутую обмотку, создающую магнитное поле, а другой взаимодействует с ним и выполнен в виде направляющей, обеспечивающей линейное перемещение подвижной части двигателя.

В линейных двигателях нет передаточных механизмов, нет преобразования вращения в линейное движение.

Нет ШВП, нет соединительных муфт, тем более нет ременных и других передач.

Нет люфтов - нет мертвых ходов.

Измерительная линейка- прецизионный датчик линейного положения с дискретностью 0,1 мкм.

Ротор- подвижная часть двигателя на постоянных редкоземельных магнитах.

Электромагнитный статор- неподвижная часть двигателя.

 

Практически нет трения и нет причин для скачкообразных подач.

Благодаря врожденной точности и динамике линейные сервоприводы подают электрод по командам прогностическо-адаптивной сервосистемы КЧПУ "СОДИК" несравнимо быстрее и точнее ШВП-приводов.

Положение электрода корректируется 500 раз в секунду.
Простота конструкции, нет изнашиваемых частей - конструктивная долговечность и надежность.

 

Линейные асинхронные двигатели

Линейный асинхронный двигатель создает магнитное поле, которое перемещает пластину в двигателе. Точность перемещения может составлять 0.03 мм на один метр перемещения, что в три раза меньше толщины человеческого волоса! Обычно пластина (ползун) прикрепляется к механизму, который должен передвигаться.

Такие двигатели имеют очень большую скорость перемещения (до 5 м/с), а следовательно высокую производительность. Скорость перемещения и шаг можно менять. Так как в двигателе минимум движущихся частей, он имеет высокую надежность.

© cop320

Конструктор сайтов - uCoz