15) Источники вторичного электропитания. Выпрямители, фильтры.

Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.

Устройство, выполняющее обратную функцию — преобразование постоянных напряжения и тока в переменные напряжение и ток — называется инвертором.

Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины).

Классификация

Выпрямители классифицируют по следующим признакам:

  • по виду переключателя выпрямляемого тока
  • по мощности
  • по степени использования полупериодов переменного напряжения
  • по схеме выпрямления — мостовые, с умножением напряжения, трансформаторные, с гальванической развязкой, бестрансформаторные и пр.;
  • по количеству используемых фаз — однофазные, двухфазные, трёхфазные и многофазные;
  • по типу электронного вентиля — полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимические и пр.;
  • по управляемости — неуправляемые (диодные), управляемые (тиристорные);
  • по количеству каналов — одноканальные, многоканальные;
  • по величине выпрямленного напряжения — низковольтные (до 100В), средневольтовые (от 100 до 1000В), высоковольтные (свыше 1000В);
  • по назначению — сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.;
  • по степени полноты мостов — полномостовые, полумостовые, четвертьмостовые;
  • по наличию устройств стабилизации — стабилизированные, нестабилизированные;
  • по управлению выходными параметрами — регулируемые, нерегулируемые;
  • по индикации выходных параметров — без индикации, с индикацией (аналоговой, цифровой);
  • по способу соединения — параллельные, последовательные, параллельно-последовательные;
  • по способу объединения — раздельные, объединённые звёздами, объединённые кольцами;
  • по частоте выпрямляемого тока — низкочастотные, среднечастотные, высокочастотные
  •  
    • механические синхронные с щёточноколлекторным коммутатором тока[3];
    • механические синхронные с контактным переключателем (выпрямителем) тока;
    • с электронной управляемой коммутацией тока (например, тиристорные);
      • электронные синхронные (например, транзисторные) — как разновидность выпрямителей с управляемой коммутацией;
    • с электронной пассивной коммутацией тока (например, диодные);
  •  
    • однополупериодные — пропускают в нагрузку только одну полуволну[6];
    • двухполупериодные — пропускают в нагрузку обе полуволны;
    • неполноволновые — не полностью используют синусоидальные полуволны;
    • полноволновые — полностью используют синусоидальные полуволны;

 

Однополупериодный выпрямитель (четвертьмост)

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами емкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 КГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями емкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.

Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Допущения: нагрузка чисто-активная, вентиль — идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю.

Эта величина вдвое меньше, чем в полномостовом.

 

Полумост

На двух диодах и двух конденсаторах, широко известный как «с удвоением напряжения» или «удвоитель Латура-Делона-Гренашера».[10]

Известна также схема с удвоением тока: параллельно единственной вторичной обмотке трансформатора включаются два последовательно соединённых дросселя, средняя точка соединения между которыми используется как средняя точка в «двухполупериодном выпрямителе со средней точкой». [11]

 

Полный мост (Гретца)

На четырёх диодах, широко известный как «двухполупериодный», изобретён немецким физиком Лео Гретцем. Площадь под интегральной кривой равна:

Двухфазные выпрямители со сдвигом фаз 180°

Два четвертьмоста параллельно ("двухполупериодный со средней точкой")

Выпрямитель Миткевича «два четвертьмоста параллельно» на двуханодной лампе. Здесь вторичная обмотка Н служит для накала катода лампы.

Выпрямитель Миткевича «два четвертьмоста параллельно» на твёрдотельных диодах.

Широко известный как «двухполупериодный со средней точкой». Предложил в 1901 г. профессор Миткевич В. Ф.. В этом выпрямителе две противофазных обмотки создают двухфазный переменный ток со сдвигом между фазами 180 угловых градусов. Двухфазный переменный ток выпрямляется двумя однополупериодными четвертьмостовыми выпрямителями, включенными параллельно и работающими на одну общую нагрузку. Является почти аналогом полномостового выпрямителя Гретца, но имеет почти вдвое большее эквивалентное внутреннее активное сопротивление, вдвое меньше диодов и средний ток через один диод почти вдвое больше, чем в полномостовом, при амплитуде выпрямляемого напряжения сопоставимой с падением напряжения на переходе твердотельного диода обладает значительно лучшим КПД по сравнению с мостовой схемой . Применялась, когда медь была дешевле диодов. В одной из работ отмечается, что в этом выпрямителе выпрямленные полупериоды имеют колоколообразную форму, то есть форму близкую к функции y=Em*(sin(w*t))².

Площадь под интегральной кривой равна:

Относительное эквивалентное активное внутреннее сопротивление равно , то есть вдвое больше, чем в однофазном полномостовом, следовательно больше потери энергии на нагрев меди обмоток трансформатора (или расход меди).

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна , где  — частота сети.

 

Два полных моста параллельно

 

Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.

 

Двухфазные выпрямители со сдвигом фаз 90°

Два полных моста параллельно

 

На двух параллельных полных мостах.

Площадь под интегральной кривой равна:

В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратносмещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.

 

Два полных моста последовательно

 

На двух последовательных полных мостах. Площадь под интегральной кривой равна:

то есть вдвое больше, чем в однофазном полномостовом.

Относительное эквивалентное внутреннее активное сопротивление равно

Ток в нагрузке равен

Мощность в нагрузке равна

Частота пульсаций равна

 

Трёхфазные выпрямители

 

Наиболее распространены трёхфазные выпрямители по схеме Миткевича В. Ф. (на трёх диодах, предложена им в 1901 г.) и по схеме Ларионова А. Н. (на шести диодах, предложена в 1923 г.). Выпрямитель по схеме Миткевича является четвертьмостовым параллельным, по схеме Ларионова — полумостовым параллельным.

 

Три четвертьмоста параллельно (схема Миткевича)

(«Частично трёхполупериодный со средней точкой»). Площадь под интегральной кривой равна:

На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды в ветвях с меньшей на данном отрезке периода ЭДС и относительное эквивалентное активное сопротивление равно сопротивлению одной ветви

Допустимые пульсации на выходе источников питания зависят от характера нагрузки и могут составлять от тысячных долей процента (первые каскады микрофонных усилителей) до единиц и десятков процентов (исполнительные устройства). Для уменьшения пульсации используются дополнительные фильтры.

Г-образный индуктивно-емкостный (LC) фильтр (рис. 12.5, а) применяется в источниках средней и большой мощности вследствие того, что падение напряжения на фильтре можно сделать сравнительно малым и тем самым обеспечить более высокий КПД.

Недостатки LC-фильтров:

1) сравнительно большие размеры и вес (при низкой частоте первичного источника);

2) дроссель фильтра является источником помех, создаваемых магнитным полем рассеяния;

3) дроссель фильтра иногда является причиной сложных переходных процессов, приводящих к искажениям в работе устройств (усилителя, передатчика и т.п.);

4) фильтр не устраняет медленных изменений питающих напряжений.

Произведение LC (Гн-мкФ) зависит от необходимого коэффициента сглаживания К, (отношение коэффициента пульсации на входе фильтра к коэффициенту

пульсации на его выходе) и определяется по формуле;

Fc — частота выпрямляемого тока (Гц); m — количество фаз. Для однополупериод-ной схемы m=1, для двухполупериодной и мостовой, а также для параллельной схемы удвоения m=2.

Для двухполупериодной или мостовой схемы при частоте сети 50 Гц

Если произведение LC больше 200...250, то фильтр следует

делать двухзвенным, причем второе звено можно выполнить по схеме ЕС-фильтра.

Г-образный реостатно-емкостный фильтр (рис. 12.5, б) целесообразно применять при малых выпрямленных токах (менее 15... 20 мА) и небольших значениях коэффициента сглаживания. Такой фильтр является достаточно дешевым, имеет малые размеры и вес. Его недостатком является малый КПД из-за большого падения выпрямленного напряжения на сопротивлении фильтра. Произведение ЕС (Ом-мкФ) определяется по формуле: EC=150000Kc/(mFc). Сопротивление Е выбирается из условия допустимого падения выпрямленного напряжения на фильтре.

Рис. 12.6. Фильтр с полупрбводниковым триодом

Фильтр с полупроводниковым триодом показан на рис. 12.6. Принцип его действия основан на том, что для переменной составляющей пульсирующего тока транзистор представляет сравнительно большое сопротивление, а для постоянного тока его сопротивление намного меньше. Транзистор включен последовательно с нагрузкой. Цепочка El, C1 обеспечивает постоянство тока эмиттера при кратковременных изменениях тока нагрузки и должна иметь большую постоянную времени. Сопротивлением Е2 устанавливается режим транзистора по постоянному току. Транзистор выбирается так, чтобы ток нагрузки фильтра был не менее, чем в 2 раза меньше максимального допустимого тока коллектора. Наибольшее напряжение между коллектором и эмиттером, которое может возникнуть в момент включения выпрямителя, не должно превышать максимально допустимого напряжения на коллекторе. Мощность рассеяния на триоде также не должна превышать допустимой. Сопротивление резистора Е1 выбирается в пределах 80... 100 Ом, Е2 — порядка десятков кОм. Емкость конденсатора Cl>l/(2mFcEl).

© cop320

Конструктор сайтов - uCoz