2. Принципы построения и основные требования к математическим моделям систем
Принципы определяют те общие требования, которым должна удовлетворять правильно построенная модель.
Рассмотрим эти принципы.
- 1. Адекватность.
Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организации, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна.
- 2. Соответствие модели решаемой задаче.
Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности.Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототипа - в этом смысл моделирования.
- 3. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства.
Этот принцип может быть назван принципом абстрагирования от второстепенных деталей.Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением.
Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием.изменение природы переменных параметров. Переменные параметры рассматриваются в качестве постоянных, дискретные - в качестве непрерывных и т.д.изменение функциональной зависимости между переменными. Нелинейная зависимость заменяется обычно линейной, дискретная функция распределения вероятностей - непрерывной;изменение ограничений (добавление, исключение или модификация). При снятии ограничений получается оптимистичное решение, при введении - пессимистичное. Варьируя ограничениями, можно найти возможные граничные значения эффективности. Такой прием часто используется для нахождения предварительных оценок эффективности решений на этапе постановки задач;ограничение точности модели.
Точность результатов модели не может быть выше точности исходных данных.
Баланс погрешностей различных видов. В соответствии с принципом баланса необходимо добиваться, например, баланса систематической погрешности моделирования за счет отклонения модели от оригинала и погрешности исходных данных, точности отдельных элементов модели, систематической погрешности моделирования и случайной погрешности при интерпретации и осреднении результатов.
Многовариантность реализаций элементов модели. Разнообразие реализаций одного и того же элемента, отличающихся по точности (а следовательно, и по сложности), обеспечивает регулирование соотношения «точность/сложность».Блочное строение. При соблюдении принципа блочного строения облегчается разработка сложных моделей и появляется возможность использования накопленного опыта и готовых блоков с минимальными связями между ними. Выделение блоков производится с учетом разделения модели по этапам и режимам функционирования системы.
В зависимости от конкретной ситуации возможны следующие подходы к построению моделей:
непосредственный анализ функционирования системы;
проведение ограниченного эксперимента на самой системе;
использование аналога;
анализ исходных данных.
Математические модели (ММ) служат для описания свойств объектов в процедурах АП. Если проектная процедура включает создание ММ и оперирование ею с целью получения полезной информации об объекте, то говорят, что процедура выполняется на основе математического моделирования.
К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности .
Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Математическая модель отражает лишь некоторые свойства объекта.
Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Пусть отражаемые в ММ свойства оцениваются вектором выходных параметров Y = (y1, y2, ..., ym). Тогда, обозначив истинное и рассчитанное с помощью ММ значения j-го параметра через yjист и yjm соответственно, определим относительную погрешность Ej расчета параметра Yj как
Ej = (yjm - yjист)/yjист (2.1)
Получена векторная оценка Е = (E1, E2, ..., Em). При необходимости сведения этой оценки к скалярной используют какую-либо норму вектора Е, например
Em = ||E|| = maxEj.
j O [1m]
Адекватность ММ - способность отражать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних Q и внутренних Х, погрешность Ej зависит от значений Q и Х.
Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности Eм в некоторой точке Qном пространства внешних переменных, а используют модель с рассчитанным вектором при различных значениях Q. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных - области адекватности (АО) математической модели:
OA = {Q|Em, d},
где d - заданная константа, равная предельно допустимой погрешности модели.
Экономичность ММ характеризуется затратами вычислительных ресурсов. Чем они меньше, тем модель экономичнее.
Математический подход к моделированию имеет ряд недостатков вследствие того, что исследователь моделирует не реальный объект, а только математическое описание реального объекта. Необходимая информация в этом случае получается после постановки серии вычислительных экспериментов с математическими моделями или с помощью имитационного моделирования.
Основные из них:
низкая адекватность математической модели реальному объекту;
проблемы, связанные с решаемостью математических моделей из-за наличия в них разрывных функций;
непригодность математических моделей для большинства объектов с переменной структурой;
приближенные методы реализаций моделей с переменными коэффициентами требуют значительных затрат и не обладают достаточной точностью решения.
В настоящее время имитационное моделирование в основном реализуется на ЦВМ. Исходное математическое описание любой динамической системы представляет собой совокупность дифференциальных, алгебраических, логических, разностных уравнений, описывающих физические процессы в отдельных функциональных элементах системы. Часто используется блочный принцип формирования моделей с применением специализированных программно-технических комплексов, построенных с учетом следующих основных требований:
диалог с вычислительной системой должен вестись на естественном профессиональном языке специалиста в конкретной предметной области. Исходным элементом для организации этого диалога должна быть базовая структурная модель звена, выполняющего определенную математическую функцию;
большая часть работ по формированию моделей и получению результатов моделирования должна выполняться вычислительной системой. Исследователь только ставит задачу и анализирует полученные результаты;